Preliminares: Variable aleatoria, sigma-álgebras. Esperanza y esperanza condicional. Lema de Borel-Cantelli. Ley 0-1 de Kolmogorov. Desigualdades básicas. Convergencia: Sucesiones de variables. Tipos de convergencia; en casi todo punto, en pésimo momento, en probabilidad. Integrabilidad uniforme. Convergencia en ley. Funciones características. Ley de los grandes números: Ley débil; condiciones necesarias y suficientes. Teorema de las tres series de Kolmogorov. Ley Fuerte. Probabilidad en espacios métricos: Teorema de Daniel-Kolmogorov. Convergencia débil de medidas. Teorema de Pormanteau. Tightness. Teorema de Prohorov. Teorema central del límite.