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SUMMARY

A formulation is developed for modal response analysis of multi-support structures using a random vibration
approach. The spectral moments of the structural response are rigorously decomposed into contributions
from spectral moments of uncoupled modal responses. An advantage of the proposed formulation is that
the total dynamic response can be obtained on the basis of mode by mode uncoupled analyses. The contri-
butions to the total response from modal responses under individual support ground motions and under
cross-correlated pairs of support ground motions can be recognized explicitly. The application and perfor-
mance of the formulation is illustrated by means of an example using a well-established coherency spectrum
model and widely known power spectra models, such as white noise and Kanai—Tajimi. The first three spec-
tral moments of displacement, shear, and bending moment responses are computed, showing that the formu-
lation produces the same results as the exact solution. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multi-support structures, such as lifelines, piping systems, long-span bridges, and viaducts, can be
subjected to differential seismic ground motions at the supports. The influence of spatially varying
earthquake ground motion on the seismic response of multi-support structures has been widely
recognized [1-10]. In general, spatial variability of ground motions may result from scattering of
waves in heterogeneous media, from the difference in arrival times of waves at different locations
and from varying local soil conditions. These three components of spatial variability are commonly
known as the incoherence, wave passage, and site response effects, respectively. For engineering
purposes, the spatial variation of earthquake ground motions can be modeled in the frequency
domain by means of the coherency spectrum. It describes the statistical dependence of earthquake
ground motions at different locations in the frequency domain. Some functional forms have been
proposed for the coherency spectrum of ground acceleration based on theoretical studies and
statistical analysis of recordings from dense arrays [11-15].

The seismic response of multi-support structures can be computed using time history analysis. It
requires that a set of ground motions properly correlated in space and time be specified at the
supports. Several simulation techniques can be applied to generate spatially correlated time series of
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earthquake ground motion [16-20]. Evidently, the response obtained from time history analysis is
specific to the particular set of support ground motions used as input. To obtain statistically
significant response measures, one would need to produce a sample of responses computed for a
large ensemble of sets of support ground motions generated from a ground motion model that
statistically characterizes the spatial variation features at the structure’s site, which increases the
amount of computational effort. Alternatively, an approach based on random vibration theory has
the advantage that statistical measures such as the mean peak response can be obtained given the
probabilistic modeling of the ground motion. A full random vibration formulation allows computing
the auto-power spectrum of the response in terms of the cross-power spectra of the support ground
motions. However, a standard practice in earthquake engineering is to characterize ground motions
for structural analysis and design by means of response spectra rather than power spectra.
Consequently, response spectrum methods based on random vibrations principles have been
proposed for multi-support structures [21-24].

In this paper, a formulation is developed for modal response analysis of multi-support structures
using a random vibration approach. It differs from existing methods in that the dynamic response is
expressed as the exact sum of fully uncoupled SDOF modal responses accounting rigorously for
modal response correlation and spatial variation of seismic ground motion. The formulation is based
on the Complete Square Root of Sum of Squares (c-SRSS) modal combination rule [25] derived for
the response analysis of multi-degree of freedom systems subject to single ground motions. First, we
focus on the auto-power spectrum of the structural response and use the c-SRSS approach to
uncouple modal response contributions. Next, the structural response is expressed as the sum of
uncoupled modal responses to the support ground motions. Due consideration is given to the
convergence analysis of spectral moments of modal responses. Examples are included illustrating
the application and performance of the formulation to compute the spectral moments of
displacement, shear, and bending moment responses, using well known models of power spectra,
such as white noise and Kanai-Tajimi, and a well-established model for the ground motion
coherency spectrum representing incoherence and wave-passage effects. Final comments and
findings are then summarized in the conclusions.

2. DYNAMIC RESPONSE

Consider a multi-support linear structural system with n response degrees of freedom subjected to m
support earthquake ground motions. Let w;, {;,i=1,...,n denote the modal frequencies and critical
damping ratios of the structure, respectively, and wu(f) , k=1,...,m denote the ground displacement
at the kth support. In general, a response of interest, Z(f), for example, internal forces in a member,
displacements at a node, or stress at a point, can be expressed as the sum of a pseudo static and a
dynamic component [26],

20 =3 aw®) + 30 el M
k=1

k=1 i=1

where yy; is the modal displacement response of a SDOF modal oscillator with natural frequency ;
and critical damping ratio ¢; subjected to the kth support ground acceleration ii(t);

Fui + 25101 Yy + OFy = — iy 2)

and a;=q"r, ci=q" iy are the effective-influence coefficients and effective modal participation
factors, respectively; r; is the kth column of the influence matrix, ¢; is the modal shape, y;; is the
modal participation factor, and ¢ is the transfer vector relating nodal displacements to the response
of interest. Suppose the ground motions at the supports of the structure are modeled as zero-mean
jointly stationary random processes, and thus, the response in each mode of the structure is also
stationary. This assumption is reasonable for modeling the seismic response of structures subject to
ground motions with duration of strong phase longer than the fundamental period of the system. Let
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Gu{w) denote the one-sided auto power spectrum of ground acceleration i (f) and H;(iw) the modal
transfer function,

H(w) = — ! Co1=vV-1 3)

2 2 )
w; — 0* + 20,0

Using basic principles of random vibration theory, the one-sided power spectrum of the response
can be derived from Equation (1),

k= =
b y )

+ Zm: Xm: Z Z ciciiH Hij(—10)G (1)

k=1 =1

where Gy(1w) is the ground acceleration cross-power spectrum given by
Gr(10) = yy(10)\/ G (@) Gy (w) (5)

and y,(1w) is the coherency spectrum; Gy (1w) = Gy () for k=1. The real and imaginary parts of G,(1w)
are known as the co-spectrum and quadrature spectrum, which are even and odd functions of
frequency, respectively. The double and quadruple sums in Equation (4) represent the contributions
from the pseudo-static and dynamic response, respectively; the triple sum accounts for the
contribution from the cross-correlation between them. The power spectrum of the dynamic response
includes contributions from cross-correlations between ground motions and cross-correlations
between modal responses. Considering that G (1w) = G}, (1w) and [H{w)H(—w)]=[H{(w)H(—w)] *,
where Z* denotes the complex conjugate of Z, the auto-power spectrum of the dynamic response,
G 4(w), can be written as follows,

Gdd ZZZZC}GCURC H( )]Rele( )

=1 =1 i=1 j= (6)

m m n

—Zzzz%%lm w)Hj(—w) | ImGyy(w)

=1 [=1 i=1 j=

where Re and Im denote the real and imaginary parts, respectively. Heredia-Zavoni [25] derived the
complete SRSS modal combination rule (c-SRSS) for the response analysis of structures subjected to
a single earthquake ground motion, expressing Re[H{w)H(—w)] in terms of the squared norms
|H(w)I* and IHJ-(a))I2 using a partial fractions expansion,

2
|Hj(o)]

Re[Hi(w)Hj(_w)] = Aj|H(w )l + Bjj 2|H( )|2+Dzj|H;‘(w)|2+E1jw—2 @)

2
j
The partial fraction factors A, B;;, Dy, and Ej; only depend on the modal frequencies and the critical
damping ratios; in terms of ratio r = 2%, they are given by
J

. [4&r (& —&r) + 2 = 1](1—r*) =272 (1 = 1) [#(1 —2&%) — (1 -2&7)] .
T Py | [ (o Py e BTy

By =~ r’E; (8b)
4&&r — 2 — 1+ 27 (1 = 2&7) — (r* = 1)E;
D; = : T3 5 5 (8c)
2r [r (1 —2§j ) — (1—25,» )]
Alj = 1’2 — l"4Dij (Sd)
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and satisfy A;;= B;j=Ej; for r=1, A;=0.5,B;;=0. Using the partial fractions expansion, we can

]17 [jis
show that
n @ 2 5
Z Z cucyRe [H;(w)H;(—w { cucy + cei)Aj + (ccy + cigen) (*) Bij} [Hi()|” 9)
i=1 j= i=1 j=1 @i
n n
Let us define the response coefficients o;; = Z(ck,-clj + ciicy)Ajs By = Z(ckiclj + ciickj) Bij; then,
j=1 j=1
JF

n n n 2
3 cucyRe[Hilo)Hj(~o)] = Z{ ne }|Hi<w>|2 (10)

i=1

For the imaginary part, Im[H{w)H;(—w)], Heredia-Zavoni and Vanmarcke [22] developed the
following partial fraction decomposition:

Im [H,(0)H(~ )] = Ay |H

i [Hy(e)

3
2 ] 2 )
i)+ Bj 3|H( o)) +DUJ|HJ»(w)] +E;— (11)
J

3
wj

Here, we express factors AU, Bl], Dl], and E in terms of ratio r = ‘”f for consistency with Equation

(8); thus, in the following expressions, these factors differ from the way they were originally written
by Heredia-Zavoni and Vanmarcke [22] in terms of ratio w/w;,

E, = (1= r)[2&r — 28 - 2(25r — 2¢r) (25 — 1)]
(=) = 22287 - 1) = 2287 — 1)][22 (267 — 1) — 24 (287 — 1)]

12
N — (=287 +287) (27 (287 — 1) — 2,4 (257 — 1)) (120
—(1 =) = [2r2(282 = 1) = 2(2&7 — 1)][2r2 (22 — 1) — 274 (2872 — 1)]
B;j = —r3E;.j (12b)
_2Er2 _E (220082 1) — 2
D - 281 — 281 — E [2r1(i§;4 1) —2(2¢% - 1)] (120)
Ay = r* (28 =2~ r'Dy) (12d)

These factors depend only on the modal frequencies and critical damping ratios and satisty AU = _D}i:

B; = —E;. Let the response coefficients a;; = Z(CkiC]j — ciicyj) Ay and By, = Z(Ckiclj — ciicij)By;-
J=1 J=1
Similarly to the aforementioned derivation, it can be shown that

Zn:ZCkz%Im w)Hj(~ )]:i{aklz< ) +/fk1,( )3}|H,-<w)|2 (13)

i=1 j= i=1
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Upon substitution of Equation (10) and (13) in Equation (6), we obtain

ait + Bin (%)2} |Hi()["ReGy(w) - [ it <w) +/)’1k1( )3} |Hy() [ ImGy (o)

(14)

As shown in Equation (14), the power spectrum of the dynamic response can be expressed as a sum
of uncoupled modal contributions.

3. SPECTRAL MOMENTS OF DYNAMIC RESPONSE

Let 4, denote the gth-order spectral moment of the dynamic response

dy = (J) G yq(w)dw (15)

For engineering purposes, the response can be characterized in terms of the first three spectral
moments, Ag, 4y, and Ap; Ao is the response variance, and /1, is the variance of its derivative. If

the response is Gaussian, the square root \/4,/A; is the mean frequency of the response, and

0= 17/1%/(/10/12) is a bandwidth measure of the response power spectrum. The statistics

and probability distribution of the maximum response in a time window are defined in terms
of 4,41, and 4,. Substituting Equation (14) into Equation (15),

i=1 k=11

Bl

2
w
@ikt + B <5> ] o!|H(0)"ReGyy(o)

(16)
3
w
- [a il (a) ) +p dd( ) ]wq|Hi(w)|2Imsz(w)}da’
which under proper convergence assurance can be written as
;t—n 3 Rel, ’BR/I ;kllmxl =Py 1
0= ) ) | amRedq i + g2 — P IMAg 1 = 7 5 IMAges (17)
=1 k=1 I=1 @i i
where
ikt = (I) | Hi(0) *G(w)do (18)
are modal spectral moments. Noting that for k=1/, Im 4, jx=1m 4,43 ;1 =0,
hg = ZZ [Ohkqu ik + /lq+2 lkk:|
i=1 k=1
n m m ﬁ ﬁ/ (19)
+ZZZ[ airReldq i + Reﬂqﬂ ikl — _Imq+l i — gllmq+3,ikl
i=1 k=1 I=1 @;
Kkl

Interchange of summations and integration in Equation (16) to obtain Equation (17) is possible
if the integrals in Equation (18) converge. If the auto-power spectra G (®) are band-limited, so
that Gy (w)=0 for w greater than some cutoff frequency, w>wy, then these integrals are
finite and the spectral moments in the right hand side of Equation (17) exist. For other
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models of auto-power spectra, convergence must be analyzed. It is considered that the
coherency function decays exponentially to zero, as will be discussed in Section 5, at a rate
sufficient for /,,3;u to converge. Therefore, when k=I, convergence of the integrals
involving the auto-power spectrum, Gy(w), should be assured for the existence of the
spectral moments of the response. For these reasons, the critical spectral moment in the right
hand side of Equation (19) is

=)

g2k = (I) o2 |Hy(0)[* G (@)de (20)

which exists if and only if the integrand is of order #, p>1, for large w. Given that

02| Hi(0)]*— — for large w, the integral converges only if Gu(w) is of order £, p>¢g—1.
So, for instance, if ground motion is modeled as white noise, the integral in Equation (20)
converges only for ¢ <1, and in such case, only the zeroth spectral moment of the structural
response, 1o, can be computed. However, if we consider the response power spectrum given in

Equation (6), then, provided that Re[w?H;(1w)H;(—1w)]|— —; for large w, convergence of the

w1

qth spectral moment of the response requires that Gy (w) only be of order ﬁ, p > g — 3. Thus,
in case of white noise excitation, spectral moments exist for m <3, and /4,4, and A, can be
obtained. This issue has been analyzed by Igusa e al. [27] for the modal decomposition of the
response of non-classically damped systems to a base acceleration. They solve the convergence
problem introducing a modified spectral density, which removes the dominant term at large
frequencies from the integrands of the spectral moments; the dominant term is such that it
vanishes when summing up over all modal responses. Based on the solution proposed by Igusa
et al. [27], we define a modified spectral density G;k(w) as follows,

Gkk (a))

Gy(@) = [Hi()]*Gi(w) — Tt @
It can be shown that for large w,
, 1—2(7)20?
Gyw)— ( s ) G (o) (22)

Therefore, 0?2G;, (w)is of order%g‘;’)and convergence requires that G (w) be of order# D >q—3

for large w. So now, for the case of white noise excitation, integrands of the type wQ+2G;k(w) converge

for g < 3, and all three spectral moments /¢, 4, and 4, can be obtained as well. The second component

in Equation (21), G%(f’), only depends on the ground motion. Because, in a general case, this second

component may diverge as w — 0, the following definition is adopted from Igusa et al. [27] for the
modified spectral density G, (o),

2 Gkk(a))
Gl = o [N GlO) =77 0 @

Hi(0) G (0), 0< o< o,

with w,, being a fixed arbitrary positive frequency. In terms of the modified spectral density, G;, (®),
we define a modified spectral moment /1;1 2 ikk:

0

/1;1+2.,ikk = {a’qHng(w)dw (24)

which converges for Gy () of order ﬁ, p > q — 3, for large w. Next, we show that the modified

spectral moments, /1;1 +2.ikk> can be used for the computation of the spectral moments of the response.
From Equation (16), (19), and (23), we have
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I B wq+2 Hy()]*Gia(@)do = f ﬁzkk a)"“G w)do + | ﬂzkk I*? (o +Gkk((1)) do
ZZ -
Ry g 0T i= @ i =1 @
(25)
and thus,
© n m G
Izzﬂzkk q+2|H )|2Gkk Ydew = IZZﬁzkk q+2G w)do + Izzﬂzkk g+2 kk( )da)
i=1 k=1 i—1 k=1 i1 k=1
(26)

Because of convergence of /l/q 12 ikk» INtegration and summation can be interchanged in the first term
of the right hand side of (26), thus

J‘Zzﬂlkk T2 H(0) PG (@ Zzﬁ’kkj 0" G (o )deraiwzlqu;Gkk(w);ii}}kdw

i=1 k=1 i=1 k=1
(27)
ﬁ n
We will next show that for any k, Z ikk — (). Because B = Z(ckiclj + click])B,j, we have that
i=1 l j=1
J#

B Y\ B By Bji -
Z e = ZZZC""C’V?' It suffices then to show that ck,-ckjw—’5+ckjckiw—’g =0 for any i,j,
i=1 @i i=1 j=1 i i i

J#i
j#i. Given that ck,ckj—cklckl, one must therefore show that — By s+ - % —o. Considering from Equation
(8b) that B,jj—fq Ej;, then 2 2 % = 7% — 5. We show in Appendlx A that E’; ; =0, and

j F @
hence, % % = 0. Consequently, the second term in the right hand side of Equation (27) vanishes,
P

similarly to what is shown by Igusa et al. [27] for a single ground acceleration, and

IZZﬂlkk q+2|H )| Gkk dCU Z Zﬁlkkj q+2G (28)

0= = @i i—1 k=1 @i

Therefore,

n m

I3 Pl o) Gutondo =3 7, 9

i=1 k=1

which shows that /1;] 2.tk can be used in Equation (19) without modifying the value of 4,. The spectral
moments of the structural response are then given by

kk n m m ﬂ a l ﬁ
g = ZZ {azkkiq ik + 2/1q+2 ,kk] + ZZZ [a,klRellq ikl + —Re/l gLkl — a)_Im/qu ikl

i=1 k= i=1 k=1 I=1 t
k#l

(30)

Equation (30) shows that the spectral moments of the dynamic response can be expressed rigorously
as a sum of uncoupled spectral moments of modal responses. The correlation between modal
responses, for given support motions, is accounted rigorously by the response coefficients
ikt Bigrs Oy and ,b’;.k], which only depend on structural properties. The space—time correlation of the
multi-support earthquake excitation input is considered through the cross-covariance of single modal
responses to pairs of support ground motions. The first term in the right hand of Equation (30)
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represents the contribution from individual modal responses to each support ground motion. The
second term takes into account contributions from modal responses to cross-correlated support
ground motions.

4. RESPONSE VARIANCE

Among spectral moments, the response variance is fundamental for the development of response
spectrum methods. For this reason, we examine next the dynamic response variance, afl = Jg; from
Equation (30),

n

NgE

m
i=1 k=1

n
o} = ZZ{ kA0 ikl + Ay ,kk} +

P a ﬂ
airRedo it + lszlReﬂzikl — “HTmiy gg — “HImis g 31
i=1 k= w i w; (31)

i

»N
el
i

The spectral moments in the right hand side of Equation (31) can be interpreted in terms of
responses of a given mode to pairs of support ground motions. It can be shown that ¢ ;; is equal to
the covariance between the response displacements Y;; and Y;; of the SDOF modal oscillator with natural
frequency, w;, damping ratio &; to the support ground accelerations iix(f) and iif?), o= Cov(Y, Yy).
Also, it is straightforward to show that 4, ;, represents the covariance between modal velocities Y
and Yy, Aokt = Cov(Ykﬁ,-,YL,-). Heredia and Vanmarcke [22] showed that —4; j; = Cov(YkA,,-, , Yl,/') is
the covariance between modal velocity Y «i and modal displacement Y;, and /3 jx; = Cov (Yk_y,-, ,Y I J-) is
the covariance between modal acceleration ¥;; and modal velocity Y. Therefore, the spectral
moments represent covariances between single mode responses to pairs of support ground
accelerations. Let p;,; denote the cross-correlation coefficient between modal displacements
Y,; and Y};, and o} denote the standard deviation of Yy,

2 2
O = Ao,ick = (f) Hi(0)|" G ()dw (32)
so that Ao i =pixoiois; then,
m m
ﬁ,kk 2,ikk Biiroit @it A Bt A3k
o5 = L R 0% o ,k+ azk1+jr——/l———3r PikiOikTil
e 0,ikk po 0kl @ Aok @] Aokl
Kt

If we let

Bk P2tk
2
@7 Ao,ikk

i = o + (34a)

/1 1 , l 1, /1 1
O = |:aikl -F@ﬂ - ﬂﬂ P Akl} Piki (34b)

the dynamic response variance can be written in a more compact form as follows:

nooom n m m
o = Z Z Cyos + Z Z Z Ouwioioi (35)
i=1 k=1 i1 k=1 I=1
k£l

In Equation (35), the dynamic response is computed based on the analysis of uncoupled modal
responses, involving parameters that depend on cross-covariances between single mode responses to
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pairs of cross-correlated support ground motions and response coefficients that depend solely on structural
properties, modal frequencies, and damping. As indicated in Equation (34a) and (34b), parameters I';; and
®;, are expressed in terms of spectral moments of modal responses, which naturally involve integrations
over frequency. The first term in the right hand of Equation (35) accounts for the contribution from
individual modal responses to each support ground motion, whereas the second one takes into account
contributions from modal responses to cross- correlated support ground motions.

5. GROUND MOTION COHERENCY SPECTRUM

Several functional forms for the coherency spectrum have been proposed based on theoretical and
empirical approaches. Der Kiureghian [15] developed a model that accounts for the main effects that
give rise to local spatial variation of earthquake ground motion, namely, the incoherence effect, the
wave-passage effect, and the site-response effects:

)incoherence )wave—passage

Ya(10) = yy(w Y (100 Py (100) 7S (36)

The incoherence effect is due to the scattering of waves in heterogeneous media and their
differential super-positioning when arriving from segments of an extended seismic source. The
wave-passage effect characterizes spatial variability of the ground motion arising from the difference
in the arrival times of waves at separate stations. The site-response component of the coherency
spectrum accounts for the spatial variability of the ground motion related to the difference in the
local soil conditions at two stations. The incoherence effect is modeled by a real-valued, non-
negative decaying function of frequency and distance between supports. Both the wave-passage and
site-response effects are modeled by complex-valued phase angle functions. A model that has been
used extensively for the incoherence effect is [13]

4 4\ 2
ykl(w)mcoherence _ exp{_("lc‘o/ k1> } (37)

where # is an incoherence coefficient, dj; is the distance between support points, and Vj is the shear
wave velocity of the ground medium. The wave passage effect is modeled by Der Kiureghian [15]:

L
ykl(lw)wave-passage _ exp{—z <dklw> } (38)

Vapp

where dﬁl is the component of support distance along the longitudinal direction of wave propagation,

% is the apparent surface wave velocity, V is the propagation velocity of waves, and v is

the incidence angle of wave arrival with the normal to the ground surface. The component of
coherency spectrum associated with site-response effects is given by Der Kiureghian [15],

e L))

Vapp =

where H;(iw) is the transfer function for the absolute ground acceleration at the site of the kth support.

6. APPLICATION EXAMPLE

Consider the simply supported two-span beam shown in Figure 1. It has uniform mass and stiffness
properties along its longitude: span lengths L,=L,=500m, EI=5.82x10'"N-m? and distributed
mass per unit length m=232.78 kg/m. For the response analysis, masses are concentrated at mid
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1 2

L =

L Ly

S

Figure 1. Structural model of two-span beam subjected to seismic ground motion.

spans, and no mass moments of inertia are associated with rotational degrees of freedom. The modal
critical damping ratio is assumed to be 5% for all modes. Modal frequencies are w,=9.79rad/s and
w,=14.81rad/s. The beam is subjected to spatially varying earthquake ground accelerations and
seismic waves propagate in the direction from support No. 1 to support No. 3. The following
responses to the horizontal components of ground accelerations perpendicular to the longitudinal
axis of the beam are analyzed: (1) displacement at midspan between supports Nos. 1 and 2; (2)
shear force at the center support; (3) bending moment at the center support. The effective influence
coefficients, a;, and effective modal participation factors, ¢, ;, for the three responses of interest are
listed in Table I. The response coefficients auy, By ey, ,b’;kl for the displacement at midspan are
shown in Table II; similarly, these response coefficients are computed for the bending moment and
shear force at the center support. All of these coefficients depend only on the structural properties
and the response of interest; they are computed once and can then be used for the response analysis
to different models of ground motion excitation.

Table I. Effective-influence coefficients and effective modal participation factors.

Mode 7’ Support ‘k’ Displacement Bending moment Shear

ax - 1 0.4062 3.4919 x 107 6.9838 x 10*°2
2 0.6875 —6.9838x 10** 1.3968 x 10*03
3 —0.0937 3.4919x 10*% 6.9838 x 10%°?

Cri 1 1 0.2500 0.0 1.3968 x 10*%°
2 0.0000 0.0 0.0
3 —0.2500 0.0 —1.3968 x 10*°¢

2 1 0.1563 7.4830 % 107 2.7444 x 10+%°
2 0.6875 3.2922x 10*0° 1.2196 x 1077
3 0.1563 7.4830 % 10%%° 2.7444 x 10*%
Table II. Displacement response coefficients.

i 1

k 1 1 1 2 2 2 3 3 3

i 1 2 3 1 2 3 1 2 3

Ot 0.121 0.129  —0.063 0129 0 —0.129  —0.063  —0.129 0.004

P —0.057  —0.126 0 —0.126 0 0.126 0 0.126 0.057

ay 0 0.012 0.005  —-0.012 0 0.012  —0.005  —0.012 0

B 0 —0.025  —0.011 0025 0 —0.025 0.011 0.025 0

i 2

k 1 1 1 2 2 2 3 3 3

i 1 2 3 1 2 3 1 2 3

o —0.103  —0.173 0.024  —0.173 0473 0.388 0.024 0.388 0.152

B 0.131 0.289 0 0289 0 —0.289 0 —0289  —0.131

g 0 —0.113  —0.052 0113 0 —0.113 0.052 0.113 0

B 0 0.085 0.039  —0.085 0 0.085  —0.039  —0.085 0
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The coherency spectrum model described in Section 5 is used considering - =4 x 10~%*s/m and

Vapp=35000m/s. First, the case of white noise ground excitation is analyzed, Gu(w)=G,. Figure 2
shows a comparison of the auto-power spectra of the structural responses computed using the
analytical expression in Equation (6) and that using the partial fraction decomposition, as given in
Equation (14). It can be seen that for all of the responses, the auto-power spectra using the partial
fraction expansion coincides precisely with the theoretical one. Peaks of the auto-power spectra are
observed at the modal frequencies of the structure. These results show that the partial fraction
decomposition works correctly and that the auto-power spectrum of the structural response can be
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Figure 2. Power spectra of structural responses (dotted-line: exact solution; full-line: partial-fraction
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computed in terms of sums of uncoupled squared norms of modal transfer functions. The spectral
moments of modal responses, as defined in Equations (18) and (24), are listed in Table III. As
noted, they are computed for each individual mode. The first three spectral moments of the dynamic
component of the displacement, bending moment, and shear responses were computed using the
formulation proposed in this paper. The spectral moments of these responses were also computed
using the analytical solution for the auto-power spectrum of the dynamic response as given in
Equation (6), which we term here as the ‘exact response’. As shown in Table IV, the results
obtained with the formulation proposed in this paper coincide with the exact response in all cases.
Numerical errors listed in Table IV are negligible; they are less than 0.04% in all cases, thus
illustrating how the proposed method yields the correct results. In Table V, spectral moments of the
modal responses and of the structural response are given as function of the arbitrary frequency w,,
which is used in the definition of the modified spectral density G, (w), Equation (23). The
values of the modified spectral moments /1;1 12 vary with the choice of w,; however, as proven in
Equation (29), the value of the structural response is not influenced by the choice of w,. The
original moments can be computed only up to order 2, and higher order moments do not exist,
whereas for the modified spectral moments, orders up to 4 do exist and can be computed.

Next, the well-known modified Kanai-Tajimi auto power spectrum is used to model ground
accelerations on soft and firm soil conditions:

1+4 /o 2 o/w 4
() = ff’;( fop) 8 (2/2 o) G (40)
(1= (@/on)?] +4a (0/on)’ [1 - (0/0n)’] + 44 (/o)
Table III. Spectral moments of modal responses; white noise model.
Order (¢) w; (rad/s) Ay 2 (©5=1000) b/l (m) Re Ay Im Ay
0 9.79 3.20 0 3.34x107% 0.00
500 1.64x 107% —1.02x107%
1000 4.81x107% ~1.50x10"*
14.81 2.12 0 9.67x10°% 0.00
500 1.96x 107 —6.87x107%
1000 8.87x 107" —2.64%107%
1 9.79 3.96x 10! 0 3.17x107% 0.00
500 7.94%107% —7.61x107%
1000 6.79%107% —3.53%x10°*
14.81 3.87x 10! 0 1.39x 10~ 0.00
500 5.96x107% —3.67x107%
1000 1.20x107% —5.89%x107%
2 9.79 2.30x10"° 0 3.21 0.00
500 5.59% 10" —6.39%107%
1000 1.50%x 107% —1.06x107%
14.81 2.46x 10" 0 2.12 0.00
500 2.87x107% —2.58x107%
1000 255%x107% ~1.68x10°%
3 9.79 (*) 500 454%x107% —5.68x107%
1000 421x107% —3.76x107%
14.81 () 500 1.79x 107 —2.20x10%
1000 6.88x107% —5.63%x107%
4 9.79 ) 500 3.94 —521
1000 1.39x 107 —1.52x107%
14.81 *) 500 1.32x 107 —2.16x107°!
1000 2.18x107% —2.14x107%
5 9.79 () 500 3.56x 10*0! —4.88x 107!
1000 5.13x107% —6.85%107 %2
14.81 ) 500 1.12 —2.35
1000 7.74%10% —8.96x107%
*Note: not required and do not exist.
Copyright © 2015 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2015; 44:2241-2260
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Table IV. Spectral moments of dynamic response; white noise model.

Displacement
Solution Zero moment /G, (s°) First moment /G, (s%) Second moment /G, (s)
Exact 9.212x107% 1.119% 107 1.505
Proposed 9.216x10* 1.119x 107" 1.506
error (%) 0.04 0.06 0.07
Shear
Solution Zero moment/G,, (N°s>/m?) First moment/G,, (N*s*/m?) Second moment/G,, (N*s/m?)
Exact 1.736x 10" 2.402x10%" 3.600x 10+
Proposed 1.736x 10*'2 2.402x10*"° 3.600x 10"
Error (%) 0.002 0.002 0.002
Bending moment
Solution Zero moment/G,, (N*s®) First moment/G,, (N°s?) Second moment/G,, (N°s)
Proposed 1.176 x 10*""! 1.665 x 10*'2 2.539x 10+
Exact 1.176 x 10" 1.665 x 1012 2.539x 10%"
Error (%) 0.004 0.004 0.004

Table V. Effect of w, on modified modal spectral moments and on structural response; white noise model.

}“q+2,ikk
Mode q Ak w,=10rad/s w,=100rad/s  w,=1000rad/s

®;=9.79 rad/s 0 3.339x10°%  3.006 3.186 3.204
1 3.172x107°°" 30.342 34.947 39.552
2 3.206 324.733 504.733 2304.733
w;=14.81rad/s 0 9.665x10° " 1.920 2.100 2.118
1 1.387x107°" 29.515 34.120 38.725
2 2.120 480.714 660.714 2460.714

Displacement Zero moment/G, (s°)  9.212x107%  9216x107"  9.216x107* 9.216x 107

spectral moments First moment/G,, (s*) 1.119x107°"  1.119x107°"  1.119x 107" 1.119% 107"
Second moment/G,, (s) 1.505 1.506 1.506 1.506

where the model parameters wg, wqr, and Cy, Sqr can be interpreted as the natural frequencies and
dampings of a soil layer, and G, as the intensity of a white noise ground acceleration at the base of
the soil deposit. Table VI lists the values of the parameters used here for modeling ground motions
in firm and soft soil conditions. Figure 3 shows a comparison of the auto-power spectra of the
structural responses computed using the analytical expression in Equation (6) and that using the
partial fraction decomposition, as given in Equation (14), for firm and soft soil conditions. It can be
seen that the theoretical auto-power spectra can be reproduced using the partial fraction
decomposition for all of the structural responses in both soil conditions. Peaks of the auto-power
spectra are observed at the modal frequencies of the structure; in the case of soft soil conditions, a
major peak is also observed at the dominant frequency of ground motion, ;. These results show
again that the partial fraction decomposition works correctly for the computation of the auto-power
spectrum of the structural response. The spectral moments of modal responses are listed in Tables
VII and VIII. The first three spectral moments of the dynamic component of the displacement, shear
force, and bending moment responses obtained using the exact solution and the formulation
proposed in this paper are listed in Table IX. The results obtained with the proposed formulation

Table VI. Parameters of ground acceleration Kanai—Tajimi power spectrum model.

Type of soil @y (rad/s) ér w, (rad/s) <o
Soft s 0.2 0.5 0.6
Stiff 15 0.6 1.5 0.6
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Figure 3. Power spectra of structural responses (dotted-line: exact solution; full-line: partial-fraction
solution); Kanai—Tajimi model.

coincide extremely well with the exact response in all cases. As shown in Table IX, numerical errors are
negligible; they are less than 0.03%, which verifies that the proposed method allows computing the exact

solution correctly. Notice that in the case of the Kanai—Tajimi model, Gy (w)— af) ;Uf for large w; hence,
Gd) is of order p =2, spectral moments Z, . » jxx can be computed for g < 3, and the first three spectral
moments of the structural response can be obtained. Therefore, the same response is estimated if one uses
the original spectral moments /. » i instead of the modified spectral moments /1;1 2k

The spectral moments of the total response were computed considering the dynamic response
component and the contributions from the pseudo-static component and from the cross-correlation
between them; results are listed in Table X. Figure 4 shows the relative weight of the contributions
from the pseudo-static, dynamic, and cross-correlation components to the first three spectral
moments of displacement, shear, and bending moment, expressed as a percentage of the total
response; when the contribution from the cross-correlation is negative, it is shown on the negative
side of the vertical axes. The pseudo-static component is dominant in the estimation of all spectral

Copyright © 2015 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2015; 44:2241-2260
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Table VII. Spectral moments of modal responses; Kanai—Tajimi model.

Firm soil Soft soil
Order (q) w; (rad/s) ka,l (rn) Re lq,ik[ Im )Vq’[k[ Re /lq,ikl Im )Vq,ikl
0 9.79 0 5.58x 1072 0.00 486x10° % 0.00
500 1.86x 107 —1.53%x10% 2.46x107% —7.26%x 107
1000 247x107% —1.32x107% 9.55x 107 —4.60x107%
14.81 0 1.61x107% 0.00 7.39x107% 0.00
500 1.74x 107 —8.73x107% 4.19% 107 ~1.17x10”*
1000 439x10°% —225%107% 1.71x10°* —8.02x10°%
1 9.79 0 5.38x107% 0.00 220x 1072 0.00
500 1.16x 107 —1.22x 107 6.93x107% —2.46x107%
1000 5.74x107% —3.73x107% 2.06%107% —1.19%x107%
14.81 0 2.29%10°% 0.00 3.37x107% 0.00
500 7.31x107% —527x10"% 1.13x 107 —3.63x107*
1000 9.91x107% —6.11x107% 3.62x107% —2.05x 107
2 9.79 0 5.36 0.00 1.41x 107 0.00
500 8.79% 10~ ~1.05x107" 229% 107 —9.95x107%
1000 1.55x107% —1.22x107% 525x107% —3.41x107%
14.81 0 3.37 0.00 2.75% 107 0.00
500 3.97x10°% —3.99%x 10 3.46x10°% —1.25%107%
1000 259%x107% ~1.90x10"* 9.06x 107% —5.76x 107
3 9.79 500 7.38x 10~ —9.48x 107! 8.86x 10?2 —4.98%10°%
1000 475%x107% —456%x10% 1.47x107% —1.04%x 107
14.81 500 2.65%x 107 —3.58x 107 1.18x 1072 —4.87%x107%
1000 7.67x107% —6.70x 107 250x107% —1.73%107%
4 9.79 500 6.53 —8.79 4.17x107% —3.11x107"
1000 1.64x 107 —1.90x 107 441x107% —3.35%x 107 %2
14.81 500 2.07x107% —3.64%x107°! 444 %107 —2.22%107%
1000 255%x107% —2.62x107% 740x107% —5.49%x107%
5 9.79 500 5.96x 10*°! —8.29x 10! 2.43 -2.31
1000 6.24x10°% —8.81x10 % 1.39x 10~ —1.14%107
14.81 500 1.83 —4.04 1.90x 10~ —1.24x107""
1000 9.34x107% —1.12x 107 231x107% —1.83x 107

Table VIII. Modified spectral moments of modal responses; Kanai—Tajimi

model.
/1;7+2,ikk
Order (q) w; (rad/s) Firm soil Soft soil
0 9.79 3.45 —7.49
14.81 1.47 —~7.60
1 9.79 4.66x 10*°! —1.07x 10!
14.81 4.23%10*! —1.15x 10!
2 9.79 5.09 x 10%0? —1.79x 107!
14.81 6.99 x 10+ —2.36x% 10!

moments of the displacement response only in soft soil. However, in firm soil conditions, the dynamic
component may me relevant as well and cannot be neglected; it is also observed that in this case, the
dynamic component becomes more important for higher order moments of the displacement response.
The dynamic component is dominant in the computation of all three spectral moments of the shear
response in both soil conditions, accounting for about 99% of the total response. In the case of
bending moment, the dynamic component controls the response only in the case of firm soil. In soft
soil, the contributions of both the pseudo-static and dynamic components, as well as their cross-
correlations, are relevant for the computation of the response; it is noted that the relative weight of
the dynamic component becomes more important for higher order spectral moments of the bending
response. In summary, the dynamic response was found to be relevant in the estimation of the first
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Figure 4. Contributions from response components to spectral moments of structural response; Kanai—
Tajimi model.

spectral moments of the displacement, shear, and bending moment response under firm soil and soft
soil conditions. It is therefore necessary to assess precisely the dynamic component to characterize
correctly the total response.

7. CONCLUSIONS

A formulation was developed for modal response analysis of multi-support structures using a random
vibration approach. The spectral moments of dynamic response are expressed rigorously as the sum of
spectral moments of uncoupled SDOF modal responses. The method accounts fully for the cross-
correlation between modal responses and for the space-time cross-correlation between support
ground motions. The correlation between modal responses, for given support motions, is rigorously
accounted for by the response coefficients derived from the partial fractions approach which depend
only on structural properties. The space—time correlation of the multi-support earthquake excitation
input is considered through cross-covariances of single modal responses to pairs of support ground
motions. Convergence of modal spectral moments has been analyzed in detail and a general
formulation implemented, which assures compatibility between existence of spectral moments of the
structural response and the spectral moments of modal responses required by the formulation. The
dynamic response variance was expressed explicitly in terms of the contribution from the modal
responses to individual support ground motions and the contribution from modal responses to

Copyright © 2015 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2015; 44:2241-2260
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cross-correlated pairs of support ground motions. An advantage of the formulation advanced here is
that the computation of the dynamic response can proceed on the basis of mode by mode uncoupled
analyses. It can be extended into a response spectrum method in which responses of single modes
can be assessed first and then the total response is obtained by summing up the contributions of
individual modes as in classical modal analysis. An example of a two-span beam was used to
illustrate the application and performance of the formulation. Well-known and established models
were used for the ground motion power spectra, such as white noise and Kanai—Tajimi for soft and
firm soil conditions, and for the coherency spectra, accounting for wave incoherence and passage
effects. The first three spectral moments of structural responses of interest were analyzed, finding
negligible numerical errors and showing that the formulation performs correctly and yields the same
results as the exact solution.

APPENDIX A
Inverting subscripts i and j in Equation (8a), one obtains for Ej;

g, PG =€) +1- )0 - 1) =2~ D1 - 262) - 21 - 267)])
a2 - (- 2] [(1- 2597 - (1 263] - (1)

(AL)

Then,

By _ 1 {[er a8 11-P)(t - ) 20 - AP -25) - -2}
Powp 4r[(1-282)2 — (1-2E2)][(1 = 262)2 — (1—=2E3)] — (1 — )

From Equation (8a),

l 1 { [4ré,»§,- — 42 4 - 1} (=1 4221 =) [P (1-257) - (1 - 25,.2)}}
P e 2 2 2 2 3 (A3)
of of ar[(1-28)r = (1 —2g)] [ 2872~ (1-287)] ~ (1= )

Summing up (A2) and (A3) yields
B B (F-1) { 2[2(1—2¢7) — (1-282)] — {4:? — 428 27 - 2]
of b = of arl(- 28— (127 [(1 - 25 - (1 27) - (1= )

J

5}

(A4)

It can easily be shown that the numerator between brackets in Equation (A.4) is equal to zero,

2[r(1—=2&%) — (1-2&7)] - [45? — 478 +2r7 =2| =0 (A.5)
thus showing that
—+—2=0 (A.6)
Wi ;
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